DTA Demand Calibration Methodology

James Hicks
Parsons Brinckerhoff

hicksji@pbworld.com

TMIP Webinar – Dynamic Traffic Assignment #4, Nov 23, 2009

Overview

- Demand Adjustment in General
- DTA Model Demand Calibration
- Details of Methodology
- Results from Applied Methodology
- Issues with the Methodology
- Possible Extensions
- Possible Additional Applications
- Summary

Demand Adjustment in General

- General principle:
 - Determine demand such that when assigned, flows replicate observed counts
- Static demand adjustment
 - Static assignment models
 - Usually for error checking, not calibration
- Important for DTA models
 - Static demand may result in flows > capacity
 - x Simulation based DTA may not be able to simulate
 - o Use to determine departure time profile
 - Static demand not often segmented by detailed departure periods

TMIP Webinar - Dynamic Traffic Assignment #4, Nov 23, 2009

Demand Adjustment, Typical Uses

- Operational Planning Studies
 - Recently observed counts
 - Demand from Planning Demand Models
 - o Primary interest is traffic response to operational changes
- DTA Model with Future Year Demand
 - Less common
 - o Problematic how do you apply adjustments in future????

Demand Calibration for DTA Models

Common Approach:

- Divide Planning Demand into short periods
 - x Start with one 3 hour matrix -> twelve 15 minute matrices
- Use successive static trip assignments of 15 minute matrices
- Compare usually hourly flows and counts
- Rough approximation
 - All trips in 15 minute period do not end in that same period
- Further manipulation to demand tables
 - x manually for remaining large discrepancies

PR 100 TMIP Webinar - Dynamic Traffic Assignment #4, Nov 23, 2009

A Different Methodology

Divide demand matrices in 15 minute periods

- 1. Solve the DTA model
 - Solve without signals if concerned about demand
 - Weight vehicle trajectories in order to match observed counts
- 3. Aggregate weighted vehicles into new demand matrices
- 4. If meets convergence criteria, Stop.
- 5. Repeat, starting at 1.

Details of Methodology

- DTA Model Requirements
 - o Simulation-based, Dynamic Equilibrium DTA
 - Need individual vehicle trajectories
 - o paths and travel times
 - Need a convergent assignment procedure
 - o avoid oscillating solutions
- DTA software must write trajectories to a file
 - o Format:
 - ▼ Vehicle id , (link id, arrival time)₁ , (link id, arrival time)₂ , etc...
- Observed Link Counts
 - o 15 minute counts

TMIP Webinar – Dynamic Traffic Assignment #4, Nov 23, 2009

Methodology Continued

- Create a table
 - o rows are vehicle records
 - × every vehicle simulated is in the table
 - o Columns are links with 15 minute counts
 - × every observed count is represented by a column
 - o Cell values are:
 - 1 if the vehicle arrives at a link during the 15 minute interval represented by the column
 - x 0 otherwise
 - Summing all the rows for any one column gives total assigned flow on the link during the time interval

	Simple	Examp	le					
Vehicle Path/Flow Incidence Table								
vehicle path	factor	link#1	link#2	link #3				
1	1	1	0	0				
2	1	0	0	1				
3	1	1	1	0				
4	1	0	0	1				
5	1	0	0	1				
Modeled Flow		2	1	3				
Observed Count		4	1	1				
	TMIP Webing	ar – Dynamic Tr	affic Assignme	nt #4, Nov 23,				

		2 ⁿ	^a Ite	ratio	on F	acto	oring			
1st Constraint Fact	oring				2nd	Constraint F	actoring			
vehicle path	factor	link#1	link#2	link #3	V	ehicle path	factor	link #1	link#2	link #3
1	2.6667	2.6667	0.0000	0.0000		1	2.6667	2.6667	0.0000	0.0000
2	0.3333	0.0000	0.0000	0.3333		2	0.3333	0.0000	0.0000	0.3333
3	1.3333	1.3333	1.3333	0.0000		3	1.0000	1.0000	1.0000	0.0000
4	0.3333	0.0000	0.0000	0.3333		4	0.3333	0.0000	0.0000	0.3333
5	0.3333	0.0000	0.0000	0.3333		5	0.3333	0.0000	0.0000	0.3333
Modeled Flow		4.0000	1.3333	1.0000	M	odeled Flow		3.6667	1.0000	1.0000
Observed Count		4	1	1				4	1	1
					observed count					
		3rd Cons	3rd Constraint Factoring							
		vehicle path		factor	link#1	link#2	link #3			
	1		<u>l</u>	2.6667	2.6667	0.0000	0.0000			
		1	2	0.3333	0.0000	0.0000	0.3333			
		3	3	1.0000	1.0000	1.0000	0.0000			
		4	1	0.3333	0.0000	0.0000	0.3333			
			5	0.3333	0.0000	0.0000	0.3333			
		Model	nd Flow		3.6667	1.0000	1.0000			
		Modeled Flow Observed Count			4	1.0000	1.0000			

Final Vehicle Weights

vehicle path	factor		
1	3.0000		
2	0.3333		
3	1.0000		
4	0.3333		
5	0.3333		

P

TMIP Webinar – Dynamic Traffic Assignment #4, Nov 23, 2009

Summary of Example

- Factors calculated by IPF procedure
 - Entropy maximizing solution
- Factors used as weights when aggregating demand tables
 - o Aggregate by Origin, Destination, Departure Period
- DTA re-solved with adjusted demand
 - o Include signal data if it was not included before
- Iterate DTA solutions with IPF adjustments until stabilized
- Results...

Implementation of Methodology • Easy to Implement • Run DTA • Read counts, read trajectories, create table, apply balancing • Summarize demand, run DTA, repeat • For DTA Results Shown: • ~100,000 vehicles • ~150 links with counts • IPF procedure computed in seconds • Runtime determined by frequency of DTA runs

Issues with Methodology

- Dependent on good observed count data
 - We initially experienced counts that would not converge
 - x Flows would not equal counts
 - x Indicates possible count errors
 - Dropping counts allowed procedure to completely converge
 - Large sample of counts recommended
 - Good coverage spatially and temporally
 - Several observations of a link and time period
 - Observations by vehicle class
- Factoring bias for short paths
 - May require more constraints than just counts

TMIP Webinar – Dynamic Traffic Assignment #4, Nov 23, 2009

Possible Extensions to Methodology

More diverse constraints

- Turning movement counts
 - Columns represent link pairs
 - Incidence table has a 1 if vehicle trajectory crosses link pair in observed time period
- Mixed constraints
 - × Variable time period counts
 - May not always have 15 minute counts mix in hourly counts
 - Link counts and turning movement counts

More Extensions to Methodology

- Demand based constraints
 - Trip length profile
 - x Columns represent vehicle paths in 0-5, 5-10, etc. miles
 - Trip departure profile
 - Columns represent vehicle paths departing in time intervals
 - Area to Area profile
 - Columns represent vehicle originating and destined to area pairs
 CBD, urban, suburban, areas defined by rivers
- Target values reflect observed (HIS) demand profiles
- Trip length constraint would have helped with our short path bias

TMIP Webinar - Dynamic Traffic Assignment #4, Nov 23, 2009

Other Applications?

- Suggestions for further study...
- Use factors from demand oriented constraints to identify demand model shortcomings
 - Trip length, departure time, area to area, others?
 - Large factors identify problems with model and/or data
 - Focus attention to specific parts of demand models
 Trips > 20 miles destined to CBD
 - Refinements to demand models may reduce values of IPF factors
 Better demand model -> fewer adjustments necessary
- Forecast with improved base year demand model which better replicates counts when assigned

Even More Applications?

- Activity Based Demand Model Interaction with DTA
 - Vehicles are associated with person activities
 - Vehicles characterized by many more attributes
 - Many activity based interactions can be defined as constraints
 - Many possible feedback points between AB Models and DTA
 - After long term choices
 - Usual work and school locations
 - Auto ownership
 - o After short term choices
 - Activity generation
 - · Trip related choices

TMIP Webinar – Dynamic Traffic Assignment #4, Nov 23, 2009

Summary and Conclusions

- IPF Based demand calibration successful for us
- Look at expanding constraints
 - Turning movement counts
 - Demand oriented constraints
- Need to explore possibility of calibrating demand models
- Comments, suggestions:
 - o hicksji@pbworld.com

